
Improved Detection and Correlation of Multi-Stage VoIP
Attack Patterns by using a Dynamic Honeynet System

Dirk Hoffstadt, Niels Wolff, Stefan Monhof, Erwin Rathgeb
Computer Networking Technology Group

University of Duisburg-Essen
Essen, Germany

dirk.hoffstadt@iem.uni-due.de, niels.wolff@stud.uni-due.de, stefan.monhof@uni-due.de, erwin.rathgeb@iem.uni-due.de

Abstract - Security issues like service misuse and fraud are well-
known problems of SIP-based networks. To develop effective
countermeasures, it is important to know how these attacks are
launched in reality. For gathering the required data, a specialized
SIP Honeynet System has been running since January 2009 and
has recorded over 58 million SIP messages. The analyses have
shown that SIP-based misuse is typically performed as a multi-
stage attack and the IP address of the attacker changes before the
actual Toll Fraud calls. To be able to correlate all attack stages
despite intermediate changes of the attacker’s IP address we
developed the new Dynamic Honeynet System (DHS), which
reacts according to the attackers’ behaviour and uses a dynamic
Honeypot configuration in real-time to significantly improve the
detection efficiency. We present the architecture and new
features such as dynamic reconfiguration and demonstrate its
attack correlation capabilities. We developed a Sensor
component to realize this system. The Sensor provides active
monitoring based on signatures to detect attacks in real-time and
controls the dynamic Honeypot.

Keywords: SIP; honeynet; misuse; fraud; attacks; VoIP;
security

I. INTRODUCTION
Voice-over-IP (VoIP) communication based on the Session

Initiation Protocol (SIP) [1] has evolved as de-facto standard
for voice communication. Therefore, support of open SIP-
based interfaces is an increasingly important requirement for
IP-based Public Branch eXchanges (PBXs) and provider
systems. This, however, opens up new opportunities for misuse
and fraud. SIP servers, especially if they allow access from
external networks, are subject to fraudulent registration
attempts (known as Registration Hijacking) as a prerequisite
for calls via compromised SIP accounts. This is particularly
attractive for attackers, because they can gain immediate
financial benefit by making toll calls (international, cellular,
premium services) via third party accounts. This attack is
called Toll Fraud and can cause the account owner substantial
financial damage in a very short time (e.g., 11 million euro in
five months [2]). In [3] we presented our VoIP Honeypot
analysis results and showed that attackers change their IP
addresses during an attack. Therefore, we could not identify
one attacker across all attack stages (see Section II). To solve
this issue, we developed the Dynamic Honeynet System (DHS)
with an active monitoring component (so-called Sensor) to
detect attacks in real-time (see Section IV). If an attack is
detected, the DHS is controlled by the Sensor component to
modify the configuration and to save the attacker’s credentials

for identification at a later date. In addition, the system allows
to set up new Honeypots, i.e. SIP servers and VoIP accounts, in
real-time in reaction to an attacker’s scanning behaviour. This
function significantly improves the number of observable
attacks.

II. VOIP-SPECIFIC MISUSE
SIP is used to establish sessions (e.g., voice, video)

between two user agents. For the purpose of this paper, the
following message types are relevant: If a user agent (i.e., SIP
device) wants to establish calls via a provider voice server in
SIP-based networks, a registration at an infrastructure
component is necessary. In order to register, a user agent sends
a REGISTER message with credentials (account name and
password) to the server. If the extension (SIP account) given in
the REGISTER message exists and the password is correct, the
server acknowledges with a 200 OK message. Else, the SIP
server either responds with a 401 UNAUTHORIZED message
if the password is empty, with a 403 FORBIDDEN message if
the password is incorrect or with a 404 NOT FOUND message
if the account does not exist. OPTIONS messages allow a user
agent to query a server’s capabilities and to discover
information about the supported SIP methods, extensions,
codecs, etc. without establishing a session. As the standard
specifies that an OPTIONS packet must be answered,
regardless of its source or existing connections we have to
ensure that this communication is always possible.
Furthermore, an INVITE message is sent by a user agent to
initiate a session.

Typically four distinct attack stages are necessary to exploit
a third party SIP extension. This attack behaviour we have also
observed during our previous VoIP Honeynet study [3]. The
first three stages are performed to identify and hijack regular
SIP extensions and can be executed by using freely available
tool suites. A common white-hat attacking tool for SIP is the
open source tool suite Sipvicious [4]. During the first three
attack stages the attacker’s source IP address does typically not
change. Therefore, we can identify the attacker by using the
source IP address. The fourth attack stage, the actual Toll
Fraud Call, occurs after an arbitrary time period and the
attacker uses different source IP addresses. Thus, the attacker
cannot be identified by its source IP address anymore.

Figure 1 shows a typical example attack recorded on
March, 24th, 2011, which involved a total of 58,216 SIP
messages and resulted in 24 Toll Fraud attempts. As first attack

stage, a Server Scan was performed. The attacker pinged IP
addresses with OPTIONS packets to identify SIP devices.
Then, to identify extensions the detected SIP server, the
attacker tried to register at several extensions without
password. This is called Extension Scan. An extension
identifier consists of digit sequences and/or series of letters. If
the extension exists, the server normally answers with a “401
UNAUTHORIZED”, because the attacker does not initially use
a password. If it does not exist, a “404 NOT FOUND” is
typically returned. The result of this attack stage is a complete
list of all existing extensions (provider accounts). In the third
stage, the attacker has to guess the password of identified
extensions with a Registration Hijacking attack. The attacker
sent numerous REGISTER messages to the SIP server with
different passwords to register at a given extension. If the
password is guessed, the information is stored to register at this
extension later on.

As shown in Figure 1, the Toll Fraud Call was launched
after a significant period of time and the source IP address had
changed. In terms of SIP messages, the attacker first sends a
REGISTER message with the correct password. After
receiving the “200 OK” message from the server, the attacker
can initiate calls by using INVITE messages. As it is not
feasible to identify the attacker by its source IP address we
have to use our new identification approach (see Section V) to
correlate all these events despite the time lag and address
change.

III. RELATED WORK
A detailed analysis of VoIP attacks against Honeypots is

given by Valli [5]. The source data is captured by a Honeypot
system consisting of several virtualized Low Interaction
Honeypots that are logging to the same system. A simple
statistical analysis is performed. The use of Sipvicious as tool
is proven and another tool, called “sipsscuser”, is found. The
author speculates that the behaviour of sipsscuser points to a

botnet- or worm-like activity. The above described Honeypots
and analyses only capture data at the specific Honeypots. But
with the knowledge of the workflow of tools like Sipvicious, a
broader view is required: It is necessary to analyze a complete
network with or without SIP devices to identify all attack
patterns. Due to the fact that there are only analyses with a few
Honeypots, it is important to determine if the attack attempts
are local problems (e.g., one host) or if whole subnets are
attacked.

The Dynamic Honeynet System presented in this paper is
based on the Dionaea-Honeypot-Framework [6] which can be
used as Low or Medium Interaction Honeypot [7]. Dionaea
provides different simulated services such as SMB, HTTP, FTP
or SIP. Our test setup requires the SIP function only. As the
Dionaea SIP component does not provide all SIP methods
(01/2011) like REGISTER, this implementation is not
sufficient to detect e.g., a Sipvicious attack. Due to the fact that
there are unsupported SIP functions and performance issues,
we developed a new SIP component which is completely
integrated in the Dionaea Honeypot framework and has low
hardware requirements. The new implementation supports all
necessary interfaces and simulates all SIP methods. Therefore,
this component reacts as a standard SIP server and is an
interesting-looking SIP device for attackers.

In [3] we present our initial SIP-based Honeypot System.
We show that it is not feasible to identify an attacker over the
whole attack chain (attack stages one to four) because attackers
typically change their IP addresses before starting a stage four
attack. This issue is solved by the Dynamic Honeynet System,
which is presented in Section IV. In [8] we present our SIP
Trace Recorder (STR), which allows passive attack monitoring
in SIP-based networks. Due to the fact that we have to
configure our honeypots in real-time, it is necessary to detect
an attack and to send a notification message to the attacked
honeypot. To solve this issue, we developed the Sensor
component (see IV), which does active monitoring based on
signatures and sends alarm messages.

Furthermore, in [3] we use a static Honeypot configuration
with predefined SIP accounts. The new implementation
provides dynamic functions based on the attacker’s behaviour
and controlled by the Sensor component which we call Enable
Extension Function (EEF).

IV. DYNAMIC HONEYNET SYSTEM ARCHITECTURE
The new Dynamic Honeynet System consists of two parts:

The active monitoring Sensor and the Dionaea-based Low
Interaction Honeypot component. Furthermore, Figure 2 shows
that a secure interface between Sensor and Honeypot is used to
realize the Honeypot reconfiguration if an attack is detected.

A. Sensor

1) Concept
The Sensor component is a software tool for rule-based

detection and reporting of misuse in SIP-based VoIP networks.
It recognizes sequences of SIP messages that are characterized
by rules and can report information about recognized message
sequences, their source and their destination to another system
via a defined interface. This interface is used for

Figure 1: Multi-stage Attack

communication between the Low Interaction Honeypot and the
Sensor. We implemented the Sensor component in C++ using
libpcap [9] for easy access to network interfaces, filtering of
network traffic and platform independency. Libpcap can be
used on different platforms and on devices with limited
hardware resources like home gateways.

The process of misuse detection and reporting can be
separated into three different phases: First capturing and
filtering of SIP messages, second analysis of the captured data
and third reporting.

In this setup only one Sensor component is used. It is
attached to the monitor port of the layer 3 switch that is
connected to our honeypots (see Figure 2). Therefore, it
receives all data that is sent to any of the Honeypots. A pcap
filter is used to filter SIP messages out. In the analysis phase
timing conditions between messages are also considered for the
recognition of SIP message sequences. Each rule defines a
specific pattern of SIP messages and timing conditions. A SIP
message definition in a rule can contain information about
destination and source of the message and SIP header values.
Comparison of these parameters with a fixed value, among
different messages of the rule or within one message is
possible. When a rule matches, an action is performed. In this
setup the Low Interaction Honeypot is contacted to enable the
attacked extension(s) for the attacker.

2) Architecture
The three phases described above are represented by three

different modules of the Sensor component. As shown in
Figure 3, the first module is called “Listener”. It retrieves all
SIP messages from a network interface in promiscuous mode
and enqueues them into a FIFO-queue. The SIP messages are
dequeued by the “Analyzer” module that is also aware of the
message sequences of well-known attacks (rules). One rule is
defined for a sequence of messages. The Analyzer compares
every received SIP message to the first message of every rule.
If a received message matches this first message, the rule is

copied and updated so that messages received later are
compared with the next message of the rule. One message can
lead to the update of more than one rule state. If the inspection
of the messages fails, the rule is not updated. If a message
matches no message of a rule, it is discarded, else it is stored
for comparison with messages received later. Since every rule
has at least one time condition that specifies in which period all
messages of the sequence have to be received, the Analyzer is
able to delete irrelevant messages and rule states. So the
memory usage of the Analyzer can be minimized (though it
depends on the defined rules and the amount of received
messages). A rule matches if a received message was
successfully compared to the last message of the rule. Then, the
third module “Notification” triggers the Honeypot using an
interface that is described in section C.

B. Low Interaction Honeypot
The Low Interaction Honeypot is based on the Dionaea

Framework [6], which is implemented in Python [10]. This
script-based component provides SIP service only (TCP and
UDP), but with comprehensive processing and basic
functionality of all SIP requests (INVITE, REGISTER,
OPTIONS, ACK, BYE, CANCEL) according to the SIP
RFC 3261 [1]. This component is used to simulate a SIP
server. Moreover, we compared the behaviour of the widely
used open source VoIP server Asterisk [11] with this script-
based component and optimized its operations so that it
resembles Asterisk more closely.

We are able to configure up to 10,000 extensions within a
freely selectable number range or with any username string.
The Honeypot provides three different operations modes:

• A complex password can be configured and the Honeypot
allows successful registrations if the password given is
correct, e.g., after a successful registration hijacking
attempt. This mode emulates the “normal” behaviour of a
server.

• No password is configured and the Honeypot denies all
registration attempts. This mode is used to fully observe
Registration Hijacking attempts until the attacker gives up.

• Based on an activation trigger from the Sensor component,
the Honeypot accepts the next registration attempt and
saves the password used (IV.C). This mode is used to
efficiently capture Registration Hijacking attempts after a
relatively small number of SIP messages (e.g., 100) and to
provoke the maximum number of Toll Fraud attempts
(because no Hijacking attempt fails).

The Honeypot component can be configured to emulate
different user agents (e.g., Asterisk [11], SER [12]) and their
specific behaviour patterns. With regard to authentication, the
SIP-Digest method [1] is implemented with fixed or random-
generated, complex passwords. The Honeypot extension
accepts Toll Fraud calls if its configured password is cracked
by a Registration Hijacking attack (stage 3) or the Sensor
component sends an activation message (see Section V.B) due
to a detected attack. A local database stores the current
configuration, any modification made by the Sensor component
and the account credential values, which belong to an attack.

Figure 2: Dynamic Honeynet System

Figure 3: Architecture of the Sensor Ccomponent

Thus, a system restart or configuration transfers to another
Honeypot are possible without losing information.

If an attacker has successfully registered at an extension,
the Honeypot accepts Toll Fraud calls and uses an echo
channel for audio communication. The channel is dropped after
a random period of time (10 to 60 seconds). Moreover, other
behaviours are feasible such as voicemail or call transfer to an
IP telephone (real user agent).

The hardware requirements are rather low compared to a
productive PBX. Our test virtual machine has one CPU core,
384MB RAM, and a 2GB hard disc and supports over 520,000
SIP requests per hour.

C. Interface between Sensor and Low Interaction Honeypot
The Sensor and the Low Interaction Honeypot component

are connected to a local private virtual control network for
exchanging control messages. This network is used exclusively
by these components and only for the exchange of control
messages. Furthermore, it is not reachable from the Internet.

For use in combination with the Low Interaction Honeypot
component we defined different Sensor rules to control the
Honeypot behaviour according to the attack stages. In
particular, regarding to a stage three attack we configured a
rule that matches if 100 REGISTER requests from one source
IP, to one of the honeypot IPs, containing only one extension
(to header) are received in a time span of 60 seconds. This
signature is based on a comprehensive evaluation of the attack
data collected in our Honeynet over last three years and
provides a reliable detection of Registration Hijacking
attempts. The parameters can be adapted if the on-going
monitoring of attacks should indicate changes of the attacker’s
behaviour. After the rule matches the attacker’s IP and the
attacked extension ID are sent to the Honeypot component in
order to enable the extension for this attacker.

The notification is sent in control messages via the local
virtual network. These control messages are SIP NOTIFY
requests with a custom XML structure in the message body.
Figure 4 shows an example of a control message. The Sensor
component at 192.168.99.94 has detected a Registration
Hijacking attempt (method=”auth”) of the extension 5994 from
the source IP 132.252.151.50 to the honeypot at
192.168.99.105 (external address is not contained in the control
message). If an attack is detected the Sensor component sends
a SIP NOTIFY message to the attacked Honeypot host.

A Dionaea script that checks the source, message type,
XML structure and commands of every received SIP message
is listening to the network interface of the local virtual network
at the Low Interaction Honeypot component. If a message is
valid, it is forwarded to the default SIP Honeypot script via the
loopback interface. The message is recognized as an internal
control message and the commands of the XML body are
executed so that the specified extension is enabled for the
attackers IP address. If an extension is enabled for one attacker,
it will not be enabled for any other IP address of an attacker
again. Details are described in section V.B.

V. NEW FEATURES

A. Dynamic Configuration
The default configuration of the Low Interaction Honeypot

component can be used to set up the IP addresses and
extensions that will be provided by the Honeypots at start-up.
All further behaviour parameters are controlled by the Sensor
component. If a Server Scan is detected in one network, the
Sensor activates more IP addresses by using the interface to the
Honeypot components. If an attacker performs an Extension
Scan, we are able to dynamically provide more extensions on
the target Honeypot. This optimization enhances the detection
capabilities and allows efficient adaption of the monitoring
scope to capture the maximum number of attacks with
minimum resource use. This is necessary because an attack
only continues if an attacker discovers active SIP devices [3].

In contrast to previous Honeypots with static configuration,
we only use extensions that have to be enabled by the Sensor
component in our current setup, i.e. there are no enabled
extensions with predefined passwords. In this constellation it is
not possible to successfully authenticate with an extension or
perform any registered action (e.g. INVITE) without the
decision of the Sensor component to enable an extension for a
stage three attack. The following function is essential to
correlate different attacker identities between attack stages
three and four.

B. Enable Extension Details
We developed the “Enable Extension Function” (EEF) due

to the fact that for further analysis a successful authentication is
necessary. If the Sensor component detects a Registration
Hijacking attack, the EEF activates the authentication option
for the specific extension based on a threshold value:

1. For SIP authentication a challenge-based mechanism
based on HTTP Digest authentication is used [1]. When
the attacker tries to crack an identified extension, his user
agent calculates a response hash based on a number of data
(nonce value, username, SIP method, SIP URI) including a
secret (the extension password). The nonce value is a
random base64 value generated by the Honeypot.

2. In case of a stage three attack from one attacker to a single
Honeypot extension (identified by identical source IP
address, destination IP address, destination extension and
username) with an amount of registrations attempts
exceeding the threshold value (e.g., 100), the EEF will
setup the extension for successful registration with the
password probed in the next register attempt. All

Figure 4: Control Message

authentication values are stored in a local database
according to enabled extensions. The mentioned threshold
value can be adjusted to masquerade our Honeypot. Thus,
we try to avoid that the attackers recognize the Honeypot
behaviour.

3. At this time, the generated nonce value will be used for
every registration response concerning this specific
extension.

4. After activating the authentication for an extension, the
Honeypot replies with a successful response (200 OK) to
the attacker if the attacker’s response hash is equal to the
one stored in the Honeypot database. Only one
authentication option will be saved in the database for
every stage three attack. It is not possible to activate more
than one password for a specific extension. Therefore, we
are able to identify an attacker without using the source IP
address.

5. It is feasible to successfully establish a call with an
authenticated INVITE request in correlation with an
already enabled extension (known response hash).

6. A successful registration attempt at an enabled extension is
possible for up to ten REGISTER messages, only. After
these attempts, the system prevents further authentication
attempts with an error message because probing of
response hashes must not possible. Therefore, only one
attacker is mapped to an extension that uses the same
authentication response.

With the Enable Extension Function it is possible to
reliably identify attackers between different attack stages.

VI. EVALUATION
From August, 1st till September, 9th, 2012 our Dynamic

Honeypot was connected to the Internet and analysed the attack
behaviour. The Honeypot received 1,283,523 SIP messages
that belonged to 23 different source IP addresses. Per single
attack the attackers performed Server and Extension Scans with
up to 12,000 messages. Server Scans did not stop if an active
server was identified. In the first setup our dynamic Honeypot
created a new extension for any SIP request which belongs to
an Extension Scan. However, this resulted in a lot of extensions
(up to 10,000) and in massive Registration Hijacking attempts
with up to 504,069 packets per attacker. Therefore, we defined
a threshold for creating extensions (> 10) and a configuration
with 100 extensions that are randomly generated at start-up. If
an extension was detected, the attacker tried to guess the
password. Due to the EEF threshold the attacker successfully
registered an existing extension after 100 SIP messages.

After a significant period of time and a successful
registration at a hijacked extension, Toll Fraud calls with a
small number of SIP messages (up to 48) were established at
various time points. Due to the fact that Registration Hijacking
attacks occurred, extensions were activated by the EEF for
successful registration. The following describes one example
attack in detail and is shown in Figure 5.

On August, 23th, 2012, at 13:01:45 our monitoring
recognized a Server and Extension Scan (see Figure 5, A) with

10,755 messages. Afterwards, at 13:07:22 a Registration
Hijacking attack was performed (B) and the Sensor component
sent a notification to the Honeypot due to the signature
threshold of 100 SIP REGISTER messages (C). The EEF
activated the attacked extension 9903 as described in Section
V.B at 13:08:10. Therefore, the attacker could successfully
register the detected extension. However, there was no Toll
Fraud attempt at that time. The source IP address did not
change until the successful registration.

On August, 24th, 2012, at 00:42:26, the hijacked extension
9903 was directly registered by an attacker by using the
“correct” credentials. Only five seconds later, the first of seven
Toll Fraud calls was performed (see Figure 5, D.1). It is
important to notice, that the attacker used another source IP
address. At this time the Honeypot detected 15 call attempts to
the same target telephone number, but the attacker probed
different dialling prefixes. Moreover, further Toll Fraud calls
occurred and the attacker tried to establish up to 48 calls to
different telephone numbers by using different source IP
addresses from August, 29th until September 9th (D.7). This
example clearly demonstrates the benefits of the new Dynamic
Honeynet System, because the correlation between
Registration Hijacking attempts and subsequent Toll Fraud
attempts could not be proven with the previously known
setups.

VII. CONCLUSION
In this paper, we have presented the Dynamic Honeynet

System that is used to identify an attacker during all attack
stages independently of the source IP address. This
functionality is necessary because previous analysis results
show that attackers typically change their IP addresses during
an attack. To realize this system, we developed the new Sensor
component, which provides active monitoring based on
signatures to detect attacks in real-time and controls the
dynamic Honeypot. The lightweight Honeypot component
provides multiple attack targets with low hardware resources
and dynamic, real-time configuration to setup additional SIP
servers and extensions. The system offers efficient adaption of
the monitoring scope to capture the maximum number of
attacks with minimum resource use. Moreover, the EEF
provokes maximum number of Toll Fraud attempts by
avoiding unsuccessful Registration Hijacking and reduces the
message overhead (high volume Registration Hijacking).

Figure 5: Dynamic Extension Enabling and Toll Fraud Calls

Finally, the EEF allows the correlation of stage 4 attacks based
on authentication, but independently of timing or IP addresses.

A first field test in our network environment demonstrates
the benefit of our new approach which traces the attacker’s
behaviour regardless of the source IP address. If an extension is
hijacked, we detected several successful registrations and call
attempts to different telephone numbers established from
different source IP addresses. Due to this behaviour, there
could be a shared attacker memory. To substantiate our results,
the Dynamic Honeynet System is still running and will collect
further attack data. We will test different thresholds for the
dynamic behaviour functions. Moreover, we intend to release
the Dynamic Honeynet System under an open source license.

We are currently developing a distributed SIP misuse
detection system based on the signatures generated during our
Honeypot study. This system will be deployed at different
locations which allow distributed attack detection and a
comparison of different networks in the internet. This work is
part of a German research project called Sunshine [13] to
develop VoIP detection and mitigations components.

REFERENCES
[1] J. Rosenberg et al., RFC 3261-SIP: Session initiation protocol, 2002.
[2] (2010, Dec.) Sipvicious Blog. [Online].

http://blog.sipvicious.org/2010/12/11-million-euro-loss-in-voip-fraud-
and.html

[3] Dirk Hoffstadt, Alexander Marold, and Erwin Rathgeb, "Analysis of
SIP-Based Threats Using a VoIP Honeynet System," in Conference
proceedings of the 11th IEEE International Conference on Trust,
Security and Privacy in Computing and Communications (TrustCom-
2012), Liverpool, UK, 2012.

[4] (2011, Aug.) Sipvicious. [Online]. http://blog.sipvicious.org
[5] Craig Valli, "An Analysis of Malfeasant Activity Directed at a VoIP

Honeypot," in Proceedings of the 8th Australian Digital Forensics
Conference, Perth, Australia, 2010, pp. 168-174.

[6] (2012, Aug.) dionaea. [Online]. http://dionaea.carnivore.it/
[7] Iyatiti Mokube and Michele Adams, "Honeypots: concepts, approaches,

and challenges," in Proceedings of the 45th annual southeast regional
conference, Winston-Salem, North Carolina, USA, 2007, pp. 321-326.

[8] Dirk Hoffstadt, Stefan Monhof, and Erwin P. Rathgeb, "SIP Trace
Recorder: Monitor and Analysis Tool for threats in SIP-based networks,"
in TRaffic Analysis and Classification Workshop (IWCMC2012-TRAC),
Limassol, Cyprus, Aug. 2012.

[9] WinPcap. [Online]. http://www.winpcap.org
[10] Python Software Foundation. (2012, Aug.) Python Programming

Language. [Online]. http://www.python.org/
[11] (2011, Aug.) Asterisk. [Online]. http://www.asterisk.org
[12] iptel.org. (2012, Aug.) SIP Express Router. [Online].

http://www.iptel.org/ser/
[13] (2012, Sep.) BMBF Sunshine Project. [Online].

http://www.sunshineproject.net

